Statistical evaluation of a novel SSVEP-BCI stimulation setup based on depth-of-field
نویسندگان
چکیده
Introduction: The main drawback of a Brain-computer Interface based on Steady-State Visual Evoked Potential (SSVEP-BCI) that detects the emergence of visual evoked potentials (VEP) in reaction to flickering stimuli is its muscular dependence due to users must redirect their gaze to put the target stimulus in their field of view. In this work, a novel setup is evaluated in which two stimuli are placed together in the center of users’ field of view, but with dissimilar distances from them, so that the target selection is performed by focus shifting instead of head, neck and/or eyeball movements. Methods: A model of VEP generation for the novel setup was developed. The Spectral F-test based on Bartett periodogram was used to evaluate the null hypothesis of absence of effects of the non-focused stimulus (NFS) within the VEP elicited by the focused stimulus (FS). To reinforce that there is not statistical evidence to support the presence of NFS effects, the PSDA detection method was employed to find the frequency of FS. Electroencephalographic signals of nine subjects were recorded. Results: Approximately in 80% of the tests, the null hypothesis with 5% level of significance was non-rejected at the fundamental frequency of NFS. The average of the accuracy rate attained with PSDA detection method was 79.4%. Conclusion: Results of this work become further evident to state that if the focused stimulus (FS) will be able to elicit distinguishable VEP pattern regardless the non-focused stimulus (NFS) is also present.
منابع مشابه
Comparison Between Different Methods of Feature Extraction in BCI Systems Based on SSVEP
There are different feature extraction methods in brain-computer interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) systems. This paper presents a comparison of five methods for stimulation frequency detection in SSVEP-based BCI systems. The techniques are based on Power Spectrum Density Analysis (PSDA), Fast Fourier Transform (FFT), Hilbert- Huang Transform (H...
متن کاملDevelopment of a Brain Computer Interface (BCI) Speller System Based on SSVEP Signals
BCI is one of the most intriguing technologies among other HCI systems, mostly because of its capability of recording brain activities. Spelling BCIs, which help paralyzed people to maintain communication, are one of the striking topics in the field of BCI. In this scientific a spelling BCI system with high transfer rate and accuracy that uses SSVEP signals is proposed.In addition, we suggested...
متن کاملApplication of a single-flicker online SSVEP BCI for spatial navigation
A promising approach for brain-computer interfaces (BCIs) employs the steady-state visual evoked potential (SSVEP) for extracting control information. Main advantages of these SSVEP BCIs are a simple and low-cost setup, little effort to adjust the system parameters to the user and comparatively high information transfer rates (ITR). However, traditional frequency-coded SSVEP BCIs require the us...
متن کاملA new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI).
In the present study, we introduce a new dual-frequency stimulation method that can produce more visual stimuli with limited number of stimulation frequencies for use in multiclass steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. Methods for increasing the number of visual stimuli are necessary, particularly for the implementation of multi-class SSVEP-b...
متن کاملOn the Quantification of SSVEP Frequency Responses in Human EEG in Realistic BCI Conditions
This article concerns one of the most important problems of brain-computer interfaces (BCI) based on Steady State Visual Evoked Potentials (SSVEP), that is the selection of the a-priori most suitable frequencies for stimulation. Previous works related to this problem were done either with measuring systems that have little in common with actual BCI systems (e.g., single flashing LED) or were pr...
متن کامل